Asymptotic Profile in Selection-mutation Equations: Gauss versus Cauchy Distributions
نویسنده
چکیده
In this paper, we study the asymptotic (large time) behavior of a selection-mutation-competition model for a population structured with respect to a phenotypic trait, when the rate of mutation is very small. We assume that the reproduction is asexual, and that the mutations can be described by a linear integral operator. We are interested in the interplay between the time variable t and the rate ε of mutations. We show that depending on α > 0, the limit ε→ 0 with t = ε−α can lead to population number densities which are either Gaussian-like (when α is small) or Cauchy-like (when α is large).
منابع مشابه
Asymptotic Profile in Selection-mutation Equations: Gauss versus Cauchy Distributions
In this paper, we study the asymptotic (large time) behavior of a selection-mutation-competition model for a population structured with respect to a phenotypic trait when the rate of mutation is very small. We assume that the reproduction is asexual, and that the mutations can be described by a linear integral operator. We are interested in the interplay between the time variable t and the rate...
متن کاملAn effective method for approximating the solution of singular integral equations with Cauchy kernel type
In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...
متن کاملDynamic Crack Propagation between Two Bonded Orthotropic Plates
The problem of crack propagation along the interface of two bonded dissimilar orthotropic plates is considered. Using Galilean transformation, the problem is reduced to a quasistatic one. Then, using Fourier transforms and asymptotic analysis, the problem is reduced to a pair of singular integral equations with Cauchy-type singularity. These equations are solved using Gauss-Chebyshev quadrature...
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملVariations of Gauss-Codazzi-Ricci Equations in Kaluza-Klein Reduction (String Theory) and Cauchy Problem (General Relativity)
We find a kind of variations of Gauss-Codazzi-Ricci equations suitable for Kaluza-Klein reduction and Cauchy problem. Especially the counterpart of extrinsic curvature tensor has antisymmetric part as well as symmetric one. If the dependence of metric tensor on reduced dimensions is negligible it becomes a pure antisymmetric tensor. PACS:03.70;11.15
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015